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ABSTRACT 

 

 Organic chemistry has been used over the decades to solve a myriad of problems facing 

our society. From pharmaceutical drug design and food additives, to plastics and fuels, organic 

synthesis is at the heart of these industries. Recently, a new focus has emerged to use greener 

syntheses in order to meet the demands of a modern society. Research has focused on the use 

of less toxic, more bio-renewable materials, while maintaining cost-effectiveness and 

industrially viable syntheses. 

 In this work, we strived for direct routes to both biologically active compounds, and 

compounds useful for industrial materials. We sought relatively cheap alternatives to the non-

renewable sources that are used industrially today. 
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GENERAL INTRODUCTION 

 

In this dissertation, we will detail direct routes to biologically active and industrially 

relevant compounds. 

In Chapter 1 we will describe a pathway to tether triphenylphosphine to an antioxidant 

molecule using radical hydrophosphonation. This is done in order to increase the free radical 

scavenging capability of the antioxidant by aggregating the molecule in the mitochondria, the 

principal location for free radical generation. 

Chapter 2 will show several routes to heteroaromatic polycarboxylates, using 

fermentation products as the starting material. The resulting compounds are intended to be 

used as a monomer in order to supplant the need for petroleum product in plastic production. 
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Chapter 1: SYNTHESIS OF TRIPHENYLPHOSPHINE TETHERED 

SALICYLALDEHYDES 

Introduction 

 The mitochondria is an important part of cellular biology, responsible for the generation 

of energy for the cell. The oxidative process by which this occurs has potential to release 

harmful reactive oxygen species, which can in turn damage the mitochondria.1,2 Mitochondrial 

dysfunction accounts for a wide array of diseases, including Alzheimer’s muscular dystrophy, 

Lou Gehrig’s, various cancers, and diabetes, to name a few.2,3 Additionally, it is believed that a 

primary cause of aging is due to free radical damage to the mitochondria.1,2 

 Previously, our group developed chemically modified antioxidants with the ability to 

aggregate in the mitochondria, with the goal that these molecules can help to neutralize free 

radicals before damage to the mitochondria can occur. We developed a method to synthesize 

vitamin E tethered to triphenyl phosphonium (TPP) salts (Figure 1). The molecule was 

subsequently shown to reduce oxidative stress in the mitochondria, as well as lowering lipid 

and hydrogen peroxide levels in mice.4 

 

 

 

Figure 1. Triphenylphosphonium tethered vitamin E 
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The TPP salt helps the molecule localize in the mitochondria; the bulky hydrophobic 

phenyl groups allow the compound to pass the bilayer of the mitochondrial membrane, while 

the charged nature of the salt holds it in the inner-membrane space.2 

 We wanted to expand upon this work, by using other known antioxidants. Through our 

work with Metabolic Technologies, Inc (MTI), we decided to employ salicylamine as our target 

antioxidant. This compound was chosen because MTI had stockpiles of the compound, and it’s 

known antioxidant properties.5 Initially, we tethered the TPP para to the phenol, as we did not 

want to interrupt the phenol-methylamine interactions. After we achieved this synthesis, we 

tethered the TPP directly to the amine in order to study the effects of different tether locations 

on the compound’s properties. 

Results and Discussion 

Our initial attempts to synthesize the molecule began with 2-(4-hydroxyphenyl)ethanol. 

We planned to protect the primary alcohol, then formylate ortho to the phenol. Reductive 

amination followed by deprotection would yield compound 3. Then, conversion of the primary 

alcohol to halide 2, followed by the SN2 reaction of the halide with triphenyl phosphine to yield 

the desired product 1 (Scheme 1).  
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Scheme 1. Retrosynthesis of triphenylphosphonium tethered salicylamine 

Protection of the primary alcohol 4 via acetylation was successful in quantitative yield.6 

However, the initial formylation attempt of 5 yielded only trace amounts of desired product 6.7 

Furthermore, other attempts at formylation utilizing the Reimer-Tiemann8 reaction led to an 

inseparable mixture of starting material 5 and product 7 (Scheme 2). 

 

 

 

 

Scheme 2. Attempts at formylation of the phenol. 

We decided to employ a method utilized by Zerkowski to directly attach a nitrogen 

containing group ortho to the phenol, which would later be cleaved to our desired salicylamine. 
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Phenol 4 was reacted with 2-chloro-N-(hydroxymethyl)acetamide in acetic acid and sulfuric acid 

to yield amide 8 in 63% yield (Scheme 3).9 

 

Scheme 3. Methylamination of the phenol. 

Unfortunately, traditional acid and base catalyzed attempts to cleave the amide were 

unsuccessful. We decided to try to utilize the alpha-halogen to install a group which could 

facilitate cleavage of the amide bond. Using 2-aminothiophenol and triethylamine in 

tetrahydrofuran we were able to synthesize compound 10 in 48% yield (Scheme 4).  

 

Scheme 4. Attachment of the intramolecular cleavage group. 

We planned to use the aniline group six atoms away from the carbonyl to 

intramolecularly cleave the amide bond, leaving the desired amine (Scheme 5). 
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Scheme 5. Proposed mechanism for intramolecular cleavage. 

We again tried a variety of acid and base catalyzed conditions, none of which yielded 

the desired amide cleavage. With this information, we decided to go back to the inseparable 

mixture of formylated and non formylated product. We began by cleaving acetates 6a-b using 

ethanol and p-toluenesulfonic acid, yielding primary alcohols 11a-b. Using thionyl chloride and 

pyridine in acetonitrile, we synthesized chlorides 12a-b. Next, were able to attach the 

triphenylphosphonium moiety yielding 13a-b using potassium iodide and triphenylphosphine in 

acetonitrile. It was at this point in the synthesis that the two compounds were separable, and 

were purified by flash chromatography. Finally, using the separated aldehyde, we synthesized 

oxime 14 using hydroxylamine10 hydrochloride and sodium hydroxide in a methanol/water mix, 

with 12% yield over 5 steps (Scheme 6). 
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Scheme 6. Alternate route to amination of the phenol. 

Due to the low overall yield, we decided to take a different approach to the synthesis of 

the TPP tethered compound. We instead started with 2,5-dihydroxybenzaldehyde 15, as it was 

readily available and had the aldehyde preinstalled. Using 15 with allyl bromide and sodium 

carbonate in acetonitrile, we were able to selectively introduce and allyl group at the 5-position 

phenol with 19% conversion.11 We were able to achieve selective allylation due to the hydrogen 

bonding of the 2-position phenol and the aldehyde, that lowers the 2-position phenol’s acidity.  

While the conversion was poor, starting material was readily recovered from the crude 

mixture by acidifying the aqueous phase and extracting. Thus, we were able to enrich our 

material and generate a large quantity of material to carry on to the next step. We converted 

aldehyde 16 to oxime 17 in 85% yield utilizing the same conditions as for oxime 14.10 From 17 

we used zinc dust in acetic acid to reduce to the methylene amine,12 followed by radical 

hydrophosphonation using triphenylphosphine, [HPPh3][BF4], 1,1-azobis-1-cyclohexanenitrile 

(ACN), and chlorobenzene,13 in 48% yield over 2 steps (Scheme 7). 
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Scheme 7.  Attachment of the triphenylphosphonium salt. 

 We sought to synthesize another related compound, with the TPP tethered directly to 

the amine. Starting with 5-amino-1-pentanol 20, we converted the alcohol to primary bromide 

21 using hydrobromic acid in water,14 in quantitative yield. From there, we reacted 

triphenylphosphine with primary bromide 21, yielding triphenylphosphonium salt 22. Finally, 

we oxidatively aminated salicylaldehyde 24 with triphenylphosphonium salt 22 to generate the 

desired compound 24 (Scheme 8). 

 

 

 

 

 

Scheme 8. Route to anchoring off the amine. 
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In summary, we developed syntheses to TPP tethered salicylamine. We chose the 

salicylamine moiety due to the abundance our collaborators had in stock, as well as the 

antioxidant properties it exhibits. We were able to attach the TPP tether to the aromatic ring 

and the amine in order to study the different effects these locations would have on biological 

activity. 

Experimental 

 Unless otherwise noted, materials were obtained from commercial suppliers and use 

without purifications. All experiments were performed under ambient atmosphere unless 

otherwise noted. Nuclear magnetic resonance experiments were performed with a Varian 400 

MHz instrument. All chemical shifts are reported relative to CDCl3 (7.26 ppm for 1H NMR) unless 

otherwise noted. Coupling constants (J) are reported in Hz with abbreviations: s = singlet, d = 

doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet. Standard grade silica 

gel (60 A, 32-63 µm) was used for flash chromatography. 

 

3-((2-chloroacetamido)methyl)-4-hydroxyphenethyl acetate (8) 

2.07g of 4-(2-hydroxyethyl)phenol and 1.89g of 2-chloro-N-(hydroxymethyl)acetamide 

was placed in a 50mL round bottom flask. 3 mL of concentrated sulfuric acid and 27 mL of 

acetic acid were added to the flask. The solution was stirred for 16 hours. The flask was poured 

into 40 mL of saturated sodium bicarbonate. Additional sodium bicarbonate was added as 

necessary to adjust the pH to 5. The aqueous layer was extracted with 3x90 mL of ethyl acetate, 

dried over sodium sulfate, and solvent was removed in vacuo. The compound was purified by 
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column chromatography 1:1 ethyl acetate: hexanes. 2.74g of 3-((2-chloroacetamido)methyl)-4-

hydroxyphenethyl acetate was recovered in 63% yield. 1H NMR (400 MHz, CDCl3) δ 9.42 (s, 1H), 

8.48 (t, 1H, J = 4 Hz), 7.06-6.84 (m, 2H), 6.72 (d, 1H, J = 8 Hz), 4.19 (d, 2H, J = 5.8 Hz), 4.10 (s, 

2H), 4.09 (t, 2H, J = 7 Hz), 2.73 (t, 2H, J = 7Hz), 1.96 (s, 3H). 

 

3-((2-((2-aminophenyl)thio)acetamido)methyl)-4-hydroxyphenethyl acetate (10) 

0.12g of 2-aminothiophenol was added to 2 mL of THF in a 25 mL flame dried round 

bottom flask. The flask was placed under an argon atmosphere. 0.14 mL of triethylamine was 

added to the flask. The thiophenol crashed out of solution upon addition of triethylamine, 3 mL 

of THF was added to dissolve the salt. 0.23g of 3-((2-chloroacetamido)methyl)-4-

hydroxyphenethyl acetate in 2 mL of THF was added to the flask. Solution was stirred for 6 

hours. Reaction was filtered and solvent removed in vacuo. Compound was purified with 

column chromatography 9:1 ethyl acetate: hexanes, yielding 0.14g 3-((2-((2-

aminophenyl)thio)acetamido)methyl)-4-hydroxyphenethyl acetate in 48% yield. 1H NMR (400 

MHz, CDCl3) δ 9.30 (s, 1H), 8.33 (t, 1H, J = 5.6 Hz), 7.22 (d, 2H, J = 7.5 Hz), 7.00 (t, 1H, J = 7.3 Hz), 

6.93-6.79 (m, 2H), 6.67 (d, 2H, J = 7 Hz), 6.45 (t, 1H, J = 7.4 Hz), 5.39 (s, 1H), 4.14 (d, 2H, J = 5.9), 

3.48 (q, 2H, J = 7.2 Hz), 3.41 (s, 2H), 2.55 (t, 2H, J = 7.1), 2.07 (s, 3H). 
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2-hydroxy-5-(2-hydroxyethyl)benzaldehyde (11b) 

0.62g of 3-formyl-4-hydroxyphenethyl acetate was placed in 10 mL of ethanol. 0.20g of 

p-toluenesulfonic acid was added was added and allowed to stir overnight. Solvent was 

removed in vacuo, and compound was purified by column chromatography 1:1 ethyl acetate: 

hexanes. Cleaved product was obtained in quantitative yield. 1H NMR (400 MHz, CDCl3) δ 9.95 

(s, 1H), 7.59 (t, 1H, J = 2.2 Hz), 7.47 (dd, 1H, J = 8.4, 2.2 Hz), 6.89 (d, 1H, J = 8.5 Hz), 3.78 (t, 2H, J 

= 7.6 Hz), 2.81 (t, 2H, J = 6.8 Hz). 

 

5-(2-chloroethyl)-2-hydroxybenzaldehyde (12b) 

0.54g of 2-hydroxy-5-(2-hydroxyethyl)benzaldehyde  was placed in 3 mL of acetonitrile. 

0.15 mL of thionyl chloride and 0.1 mL of pyridine was added to the flask. The solution was 

stirred for 2 hours, until the TLC indicated complete conversion. The compound was brought on 

to the next step without further purification. 1H NMR (400 MHz, CDCl3) δ 9.80 (s, 1H), 7.45 (t, 

1H, J = 2,2 Hz), 7.32 (dd, 1H, J = 8.4, 2.2 Hz), 7.01 (d, 1H, J = 8.4 Hz), 3.63 (t, 2H, J = 7.5 Hz), 2.94 

(t, 2H, J = 6.9 Hz). 

 

(3-formyl-4-hydroxyphenethyl)triphenylphosphonium salt (13b) 

To the 5-(2-chloroethyl)-2-hydroxybenzaldehyde solution, 0.16g of potassium iodide 

was added. 1.30g of triphenylphosphine was added, and the solution was refluxed overnight. At 

this point, the compounds became separable. The product was purified by gradient column 
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chromatography 1:1 ethyl acetate: hexanes to 1:9 methanol: ethyl acetate yielding the 

phosphonium salt. 1H NMR (400 MHz, DMSO-d6) δ 9.41 (s, 1H), 7.96-7.24 (m, 18H), 3.77 (t, 2H, J 

= 7.4 Hz), 3.01 (t, 2H, J = 7.2 Hz). 

 

(4-hydroxy-3-((hydroxyimino)methyl)phenethyl)triphenylphosphonium salt (14) 

0.41g of (3-formyl-4-hydroxyphenethyl)triphenylphosphonium salt was dissolved in 5 

mL of methanol. 0.36g of hydroxylamine hydrochloride was dissolved in 0.7 mL of water and 

added to the phosphonium salt. 0.21g of sodium hydroxide was added. The solution was 

refluxed for 30 minutes. Solvent was removed in vacuo and purified by gradient column 

chromatography ethyl acetate to 1:9 methanol: dichloromethane. 0.15g of (4-hydroxy-3-

((hydroxyimino)methyl)phenethyl)triphenylphosphonium salt was obtained in 35% yield. 1H 

NMR (400 MHz, DMSO-d6) δ 9.69 (s, 1H), 7.93-7.28 (m, 18H), 3.47 (t, 2H, J = 6.4 Hz), 2.65 (t, 2H, 

J = 7 Hz). 

 

5-(Allyloxy)-2-hydroxybenzaldehyde (16) 

To a 25 mL round bottom flask was added 2,5-dihydroxybenzaldehyde (1.48 g, 10.7 

mmol), acetonitrile (11 mL), sodium carbonate (2.27 g, 21.4 mmol), and allyl bromide (0.93 mL, 

10.7 mmol). Reaction was heated to 80 °C and allowed to reflux overnight. The resulting 

solution was cooled to room temperature, poured into 20 mL 1M NaOH, and extracted with 20 

mL of ethyl acetate to remove 2,5-bis(allyloxy)benzaldehyde side product. The aqueous layer 

was acidified with concentrated HCl to pH 1, and extracted with 3x20 mL of ethyl acetate. The 
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organic layer was dried with magnesium sulfate and filtered. Solvent was removed under 

reduced pressure. Product was purified via column chromatography 1:4 ethyl acetate: hexanes, 

giving 5-(allyloxy)-2-hydroxybenzaldehyde (0.35 g, 1.99 mmol) in 19% yield. 1H NMR (400 MHz, 

CDCl3) δ 10.63 (s, 1H), 9.82 (s, 1H), 7.14 (dd, 1H, J = 9.1, 3.2 Hz), 7.00 (d, 1H, J = 3 Hz), 6.90 (d, 

1H, J = 9.1 Hz), 6.13-5.92 (m, 1H), 5.39 (d, 1H. J = 17.2 Hz), 5.29 (d, 1H, J = 10.7 Hz), 4.50 (d, 2H, J 

= 5.3 Hz). 

 

5-(Allyloxy)-2-hydroxybenzaldehyde oxime (17) 

To a 25 mL round bottom flask was added 5-(allyloxy)-2-hydroxybenzaldehyde (0.16 g, 

0.9 mmol). Hydroxylamine hydrochloride (0.10 g, 1.37 mmol) and sodium hydroxide (0.06 g, 

1.37 mmol) were dissolved in 1.5 mL deionized water. This aqueous solution was added, and 

the reaction was heated to 80 °C for 1 hour. The mixture was allowed to cool to room 

temperature and was poured into 20 mL of an HCl solution (pH 1). The solution was extracted 

with 3x20 mL of ethyl acetate, dried with magnesium sulfate, and filtered. Solvent was removed 

under reduced pressure, giving 5-(allyloxy)-2-hydroxybenzaldehyde oxime (0.17 g, 0.9 mmol) in 

quantitative yield. 1H NMR (400 MHz, CDCl3) δ 8.17 (s, 1H), 7.03-6.84 (m, 2H), 6.72 (t, 1H, J = 1.6 

Hz), 6.14-5.93 (m, 1H), 5.40 (d, 1H, J = 17.2 Hz), 5.28 (d, 1H. J = 10.7 Hz), 4.48 (d, 2H, J = 5.3 Hz). 

 

(5-(Allyloxy)-2-hydroxyphenol)methanaminium acetate (18) 

To a 10 mL round bottom flask was added 5-(allyloxy)-2-hydroxybenzaldehyde oxime 

(0.17 g, 0.9 mmol), then acetic acid (2 mL) and zinc dust (0.20 g, 3 mmol). Reaction was allowed 
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to stir overnight at room temperature. Solution was diluted with methanol (5 mL), and zinc dust 

was filtered off, and solvent was removed under reduced pressure. Several washes with 

toluene followed by removal of solvent under reduced pressure were required to remove trace 

amounts of acetic acid. (5-(allyloxy)-2-hydroxyphenol)methanaminium acetate (0.21g, 0.9 

mmol) was recovered in quantitative yield. 1H NMR (400 MHz, DMSO-d6) δ 6.76 (s, 1H), 6.78-

6.52 (m, 2H), 6.10-5.89 (m, 1H), 5.33 (d, 1H, J = 17.2 Hz), 5.19 (d, 1H, J = 10.7 Hz), 4.48 (d, 2H. J = 

5.3 Hz). 

 

Triphenylphosphonium tetrafluoroborate 

To a 125 mL Erlenmeyer flask was added triphenylphosphine (2.91 g, 11 mmol) and 

dissolved in Et2O (15 mL). Tetrafluoroboric acid diethyl ether complex (1.36 mL, 10 mmol) was 

added, and a white precipitate formed. The precipitate was collected via filtration and 

recrystallized from chloroform giving triphenylphosphonium tetrafluoroborate (0.97 g, 2.7 

mmol) in 27% yield. 

 

(3-(3-(ammoniomethyl)-4-hydroxyphenoxy)propyl)triphenylphosphonium salt (19) 

To a 50 mL round bottom flask was added (5-(allyloxy)-2-

hydroxyphenol)methanaminium acetate (0.14 g, 0.6 mmol), chlorobenzene (25 mL), and acetic 

acid (2 mL). After the compound completely dissolved, 1,1’-azobis(cyclohexanecarbonitrile) 

(0.03 g, 0.12 mmol), triphenylphosphonium tetrafluoroborate (0.51 g, 2.64 mmol), and 

triphenylphosphine (0.03 g, 0.12 mmol) were added. Reaction vessel sealed with a septum and 

sparged with argon gas for 5 minutes. Reaction was heated to 110 °C under balloon pressure 
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and allowed to react overnight. Mixture was cooled to room temperature and solvent was 

removed under reduced pressure. Several washes with toluene followed by removal of solvent 

under reduced pressure were required to remove trace amounts of acetic acid and 

chlorobenzene. Resulting crude solid was triturated several times with chloroform, giving (3-(3-

(ammoniomethyl)-4-hydroxyphenoxy)propyl)triphenylphosphonium acetate tetrafluoroborate 

(0.14 g, 0.29 mmol) in 48% yield. 1H NMR (400 MHz, CDCl3) δ 8.03-7.54 (m, 15H), 6.97-6.64 (m, 

3H), 5.01-4.67 (m, 4H), 4.07 (t, 2H, J = 7 Hz), 3.34 (q, 2H, J = 15.4 Hz). 

 

5-bromopentan-1-amine (21) 

1.11g 5-amino-1-pentanol (10 mmol) is added to a 25 mL round bottom flask. 10 mL of 

48% HBr in H2O is added. The reaction vessel is refluxed for three hours. The solvent is removed 

under reduced pressure yield a brown, sticky solid in quantitative yield. The compound is used 

in the next step without any further purification. 1H NMR (400 MHz, DMSO-d6) δ 3.37 (t, 2H, J = 

6.8 Hz), 3.01 (t, 2H, J = 6.9 Hz), 1.97-1.54 (m, 6H). 

 

(5-aminopentyl)triphenylphosphonium salt (22) 

2.47g 5-bromopentan-1-amine hydrobromide (10 mmol) is placed in a 100 mL round 

bottom flask. 50 mL acetonitrile is added to the flask. 5.27g triphenylphospine (20 mmol) is 

added to the flask. The flask is heated under reflux for 60 hrs. Solvent is removed under 

reduced pressure yielding brown crude oil. The oil is dissolved into 30 mL water and washed 

3x30 mL diethyl ether. Aqueous phase is basified with sodium carbonate, then extracted 3x30 
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mL dichloromethane.  Solvent was removed under reduced pressure, giving 5.08g of (5-

aminopentyl)triphenylphosphonium in quantitative yield. 1H NMR (400 MHz, DMSO-d6) δ 8.13-

7.54 (m, 15H), 3.61 (t, 2H, J = 6.9 Hz), 2.72 (t, 2H, J = 7 Hz), 1.72-1.35 (m, 6H).  

 

(5-((2-hydroxybenzyl)amino)pentyl)triphenylphosphonium salt (24) 

0.30g (5-aminopentyl)triphenylphosphonium bromide (0.7 mmol) placed in 10 mL round 

bottom flask. 5 mL methanol added. 0.07 mL salicylaldehyde (0.7 mmol) added. Flask stirred 

overnight. 0.04g sodium borohydride (1.05 mmol, 1.5 eq) added to flask. Reaction allowed to 

proceed until gas formation stopped. Solution poured into 20 mL water and extracted 3x 20 mL 

dichloromethane. Solvent removed under reduced pressure. Crude solid dissolved in minimal 

amount of dichloromethane and flooded with diethyl ether. White crystals collected forming 

mixture of products in a 4:5 ratio. 1H NMR (400 MHz, DMSO-d6) δ 8.11-7.46 (m, 15H), 6.86 (t, 

1H, J = 7.8 Hz), 6.74 (d, 1H, J = 7.4 Hz), 6.47 (t, 1H, J = 7.4 Hz), 6.39 (d, 1H, J = 7 Hz), 4.50 (s, 2H), 

3.75 (t, 2H, J = 12.9 Hz), 2.48 (t, 2H, J = 2 Hz), 1.65-1.22 (m, 6H). 
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Chapter 2: BIO-RENEWABLE SYNTHESES OF HETEROAROMATIC 

POLYCARBOXYLATES 

Introduction 

Terephthalic acid is an important molecule for the polymer industry. It is produced from 

xylenes,1 a petroleum product, making it an extremely cheap precursor to polymers, and is used 

for the production of polyethylene terephthalate (PET).2 Polyethylene terephthalate is 

ubiquitous in modern society, being the 4th most produced polymer and seeing uses from 

clothing, to plastics, to engineering resins.3 Unfortunately, since it is currently synthesized from 

petroleum, it is non-renewable, and the production can have huge environmental impact. 

Accordingly, there is interest in developing an alternative to PET that is both environmentally 

friendly, and renewable. 

 

 

 

 

 

 

Figure 1. Terephthalic acid and desired furan polycarboxylates. 
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Recently there has been interest in furan carboxylates as such a replacement. 

Specifically, polymers from furan 2,5-dicarboxylate have been shown to have similar properties 

to PET.4 The properties of the other furan polycarboxylate polymers are less known, partly 

because syntheses to their precursors are less common.  As such, we set out to develop 

syntheses for various furan dicarboxylates and tricarboxylates. 

 In designing our synthesis, we wanted to keep in mind the goals of replacing 

terephthalic acid. Specifically, using bio renewable starting materials to achieve our synthesis. 

Furthermore, we would have to use relatively cheap materials in order to keep any synthesis 

developed economically competitive with terephthalic acid. Finally, we wanted to make sure 

the synthesis was as few steps as possible for it to be commercially viable. 

 We had two primary strategies in mind to achieve our synthesis. Initially, we sought to 

carboxylate furfural, as it is a relatively inexpensive starting material, and the synthesis route to 

the product is short. Additionally, furfural is commercially made by dehydrating five-carbon 

sugars in biomass waste, so it satisfied the requirement of a bio renewable starting material.5 

 The second strategy was to cyclize various compounds from the citric acid cycle. These 

molecules are an excellent bio renewable resource, as bacterial fermentation of agricultural 

products can be tuned to produce the desired product from the cycle. As such, should a large 

enough demand for a particular citric acid cycle product arise, fermentations could be easily 

developed to cheaply produce the required compound. 
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Results and Discussion 

Our focus began with the dicarboxylates of furan. We tried furfural 1 and potassium 

acetate under a carbon dioxide atmosphere with no success.6 Hypothesizing that we needed a 

more accessible carbonyl source, we again tried furfural 1 with various bases, and dimethyl 

carbonate, but still had no success (Scheme 1).   

 

 

 

 

 

Scheme 1. Initial attempts at furan dicarboxylates. 

With this lack of success, we decided to start with a halogen installed on the furan ring 

in order to help convert to the carbonyl. We choose 5-bromo-2-methyl furoic acid as our 

electrophile for its availability, and cyanide as our nucleophile due to ease of transformation 

into the carboxylic acid. After converting to the ester using thionyl chloride in methanol, we 

reacted the ester 4 with sodium cyanide in DMSO. To our surprise, the cyanide attacked the 

ester instead of the halogen, giving 5. We synthesized the t-butyl ester of 5-bromo-2-methyl 

furoic acid using t-butanol, magnesium sulphate, and sulfuric acid in dichloromethane7 in an 

attempt to prevent attack on the ester. However, this compound showed to be unreactive 

(Scheme 2). 
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Scheme 2. Further attempts at furan dicarboxylates. 

With still no success, we decided to try our second strategy to synthesize the desired 

furan. Inspired by the work of Spengler, we decided to use alpha-ketoglutarate (aKG) 8 as our 

starting material. Using the equilibrium between the open chain form and the cyclic form of 

aKG 8, Sprengler was able to cyclize aKG by capturing the molecule in its cyclic form using 

hexafluoroacetone (Scheme 3).8 

 

 

 

 

Scheme 3. Previous work done to trap the spirocyclic form of aKG. 

Our goal was to cyclize aKG in a similar matter, formylate the compound, then deprotect 

the spirocyclic compound so the furan could be synthesized. We knew we had to use a very 
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electrophilic carbonyl, however due to the expense and toxicity of using hexafluoroacetone, we 

set out to find a different carbonyl to achieve the desired spirocyclic compound (Scheme 4). 

 

 

 

 

  

 

Scheme 4. Our attempts to trap the spirocyclic form of aKG. 

We tried several compounds to achieve the desired spirocyclic compound, including 

paraldehyde, benzaldehyde, 1,3,5-trioxane, isobutyraldehyde, paraformaldehyde, phosphorous 

trichloride, phenylboronic acid, and dichlorodimethylsilane, none of which afforded the desired 

spirocycle. We were, however, able to capture aKG 8 in its cyclic form using acetic anhydride, 

giving lactone 10 (Scheme 5). 

 

 

 

Scheme 5. Trapping the molecule as the lactone. 
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Unfortunately, due to the two acidic alpha carbons, this route turned out to be 

unfruitful as we were unable to control the selectivity of the deprotonation. We attempted to 

instead use acetic formic anhydride to achieve the cyclization, however the reaction yielded the 

same product as with acetic anhydride (Scheme 6). Additionally, the reaction with formic 

anhydride yielded starting materials (Scheme 7). 

  

 

 

 

 

Scheme 6. Alternate trapping mechanism of aKG. 

 

 

 

 

Scheme 7. Attempts to manipulate lactone of aKG. 

The fact that we could isolate the gamma lactone form of aKG suggested to us that the 

cyclic form was present long enough to undergo chemical manipulation and capture. With this 

information in hand, we tried to esterify the transient alcoholic form of aKG to mimic the 



www.manaraa.com

25 
 

reaction with formic anhydride in order to achieve our desired lactone.  We reacted formic acid 

with DCC and DMAP in THF, however we only recovered starting material.  

Utilizing a procedure our group has previously been successful with, we were able to 

cyclize aKG 8 into what appeared to be a productive form. Using sodium bisulfite as a reagent 

to convert the ketone into the corresponding alcohol, we formed gamma lactone 13 (Scheme 

8).9 Promising as this compound appeared, it was insoluble in all tested solvents, including 

DMSO, water, ethanol, and methanol. Unfortunately, this rendered our compound impractical 

toward the formylation step of the synthesis. 

 

 

 

Scheme 8. Alternate trapping mechanism of aKG. 

Feeling as we had exhausted our options with aKG, we decided to use glutamic acid 14 

as our starting material. We proposed to cyclize glutamic acid into the corresponding gamma-

lactone using sodium nitrite. With this lactone in hand, we would selectively formylate alpha to 

the carbonyl of the lactone. We reasoned the carboxylate would lower the pKa of the 2-

position proton enough to achieve selective formylation. After formylating our lactone, we 
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would open the lactone and cyclize to the dihydrofuran, followed by oxidation to the desired 

product (Scheme 9).  

 

 

 

 

Scheme 9. Proposed route to furan dicarboxylate. 

Following the procedure of Montagnat, we were successfully able to convert glutamic 

acid 14 to gamma lactone 15 in one pot using hydrochloric acid and sodium nitrite in water 

(Scheme 10).10 

 

 

 

Scheme 10. Lactone formation from glutamic acid. 

With gamma lactone 15 in hand, we attempted selective formylation. We tried a host of 

solvents and bases with ethyl formate in order to afford the selective formylation, including 2-4 

equivalents potassium tert-butyl hydroxide in tetrahydrofuran, 4 equivalents potassium tert-

butoxide in 1:3 dimethylformamide: tetrahydrofuran, and 2 equivalents lithium 

diisopropylamide in tetrahydrofuran. Unfortunately, none of these conditions gave the desired 
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product, yielding only starting material. We speculated that the dianion was too insoluble in the 

organic solvents as we observed precipitate formation upon addition of the base (Scheme 11).  

 

 

 

Scheme 11. Attempts at modification of the lactone. 

In an effort to increase solubility, we decided to esterify the compound. While this could 

have reduced regioselectivity, we wanted to test our formylation conditions on the lactone. The 

reaction of lactone 15 in methanol with various acid sources did in fact esterify the compound, 

but with the unintended consequence of opening the lactone to the open-chain form 17 

(Scheme 12).  

 

 

 

Scheme 12. Further attempts at modifying the lactone. 

We tried to circumvent this problem by utilizing other esterification methods. Both 

triethylamine and methyl iodide in THF, and DCC, DMAP, and methanol in THF were 

unsuccessful in yielding the desired ester (Scheme 13).  
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Scheme 13. Attempts to form the lactone ester. 

Even though we were unsuccessful in esterifying the lactone, we decided to attempt 

formylation of the open chain compound. We hypothesized that we would still be able to 

achieve regioselectivity due to the increased electron density around the hydroxyl group, 

allowing us to deprotonate and formylate the ester distal to the hydroxyl group. We tried 

various bases and solvents with ethyl formate, including potassium tert-butoxide in ethanol, 

lithium diisopropylamide in tetrahydrofuran, and sodium hydride in tetrahydrofuran. 

Unfortunately, these conditions only yielded starting material. 

Having made little progress with both aKG and glutamic acid as a precursor, we 

switched our starting material to oxaloacetic acid (OAA). Our proposed synthesis used both 

OAA and methyl alpha-bromoacrylate to create the carbon skeleton for our furans. Using 
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dimethyl oxaloacetate, we would facilitate a Michael addition with methyl alpha-bromoacrylate 

to form the dihydrofuran, followed by oxidation to form the desired furan (Scheme 14).  

 

 

 

 

 

Scheme 14. Alternate proposed route to furan polycarboxylate. 

Using methanol and thionyl chloride, we were able to esterify OAA in excellent yield. 

Interestingly, the NMR of the esterified compound showed almost that the compound was 

almost exclusively in the enol form. This was thought to be due to the stabilizing effect of the 

oxygen on the carbonyl 6 atoms away.  

Separately, we synthesized methyl alpha-bromoacrylate from methyl acrylate, bromine, 

and triethylamine in chloroform.11 We then deprotonated compound 19 using 1,8-

diazabicylco[5.4.0]undec-7-ene (DBU), and reacted with methyl alpha-bromoacrylate 20.12 Two 

substitution patterns for the resulting dihydrofuran were possible, depending on whether C- or 

O-alkylation happened first. We correctly predicted the 2,3,5 substitution pattern over the 2,3,4 

pattern due to the softer nature of the enolate anion when compared to the alkoxide anion 

(Scheme 15).   
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Scheme 15. Proposed mechanism to dihydrofuran tricarboxylate. 

Upon further study, we discovered that the choice of base was imperative in the 

reaction, as substituting sodium hydride for DBU yielded no reaction. We predict that the 

chosen base is crucial in the proton transfer, thereby necessitating an equilibrating base like 

DBU. 

Unfortunately, we were unable to purify dihydrofuran 23 by flash chromatography. 

Upon inspection of the proposed mechanism, we can see that the enolate has two possible 
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geometries 22a and 22b. Only 22b is the correct orientation for the second substitution 

reaction to occur. We hypothesized that the impurities present in the compound 23 were due 

to side reactions with the unreactive geometry (Scheme 16).  

 

 

 

 

Scheme 16. Equilibrium between reactive and unreactive geometry. 

In order to disfavor side reactions, we needed to either increase the favorability of the 

reactive geometry 22b or allow for more equilibration to the reactive geometry 22b. Due to the 

intramolecular nature of the second reaction, we speculated that once in the correct geometry, 

the ring would close quickly, thereby driving the equilibrium to the correct orientation. To our 

delight, by heating up the reaction from 0oC to 40oC, we were able to increase the rate of the 

equilibration and got a crude mixture which was able to purify by flash chromatography.  

With a route to purified dihydrofuran 23, we began to test oxidation conditions.  Our 

initial test with manganese (IV) oxide caused the compound to decompose. We then tried 
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brominating the dihydrofuran, with subsequent elimination. While we were successful with the 

bromination step to get dihalide 24, the subsequent elimination was unsuccessful (Scheme 17).  

 

 

 

 

Scheme 17. Attempts at oxidation of dihydrofuran tricarboxylate. 

Considering the nature of the dihydrofuran, we decided that it was a good candidate to 

undergo radical halogenation, followed by elimination to the desired furan. To our delight, we 

found that the compound not only underwent radical halogenation to form compounds 26a-b, 

but also spontaneously eliminated to desired furan 27 in one pot (Scheme 18). Due to the 

multitude of stabilizing factors for the radical, as well as the spontaneous elimination of the 

halide, we were unable to determine on the regioselectivity of halogenation, however for our 

purposes this did not matter.  

 

 

 

Scheme 18. Alternate attempt at oxidation of dihydrofuran tricarboxylate. 
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With the synthetic route for trimethyl furan-2,3,5-tricaboxylate 27 in hand, we set out 

to develop a route to furan-2,3,4-tricarboxylate 30. Instead of using an acrylate derivative, we 

decided to change our electrophile to ethyl bromopyruvate 28. Ethyl bromopyruvate is easily 

synthesized from bromine and ethyl pyruvate, another fermentation product. The challenge 

with this system is that our OAA ester has two possible nucleophilic sites, and ethyl 

bromopyruvate has two possible electrophilic sites, yielding 4 possible reactions pathways and 

2 possible products. Unlike with the methyl alpha-bromoacrylate, there was not a clear 

indication as to which pathway the molecule would undergo (Scheme 19). 

- 

 

 

 

 

 

 

 

Scheme 19. Possible mechanisms for formation of dihydrofuran tricarboxylate. 

We hypothesized that the primary bromide would be more electrophilic than the 

ketone, and as such wanted to promote the alkoxide attack over the enolate. We reacted our 
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OAA ester 19 with potassium hydride in DMF at 0oC and ethyl bromopyruvate 28, followed by 

reflux in toluene, but saw no reaction. Based on the requirement for an equilibrating base in 

the previous synthesis, we decided to again try DBU as our base. To our delight, not only did the 

two compounds react to form dihydrofuran 29, but also underwent the requisite elimination to 

yield furan-2,3,4-tricarboxylate 30 (Scheme 20). 

 

 

 

 

Scheme 20. Route to alternate isomer of furan tricarboxylae. 

With routes to both isomers of the furan-tricarboxylate, we wanted to achieve 

synthesize a heteroaromatic tetracarboxylate. In our initial attempts, we tried to dimerize 

dimethyl aspartate into the corresponding pyrrole. Using manganese (III) acetate, copper (II) 

acetate, and sodium acetate Zhou was able to achieve this.13 Unfortunately, our attempts to 

reproduce the synthesis were not successful. We decided to instead use dimethyl ethylene 

dicarboxylate, an alkyl amine, and an oxidizing agent to synthesize our pyrrole.  

 

 

Scheme 21. Proposed route to pyrrole tetracarboxylate. 
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Our initial attempt used ceric ammonium nitrate as the oxidizing agent, and benzyl 

amine as the alkyl amine.14 Unfortunately, we were unable to recover any of the desired 

product. Upon further analysis of literature we noticed that Liu had been successful using 

(diacetoxyiodo)benzene and silver tetrafluoroborate as the oxidizing agent in dioxane at 

100oC.15 We were indeed able to replicate the results, and were thus able to synthesize a 

heteroaromatic tetracarboxylate, in addition to the furan tricarboxylates for polymer studies 

(Scheme 21). 

In summary, we developed a bio renewable, cheap, and short route to both isomers of 

furan triester. Additionally, we were able to replicate the synthesis of a pyrrole tetraester. We 

did so in order to further study these molecules for their polymer properties as a potential 

future replacement for terephthalic acid derived polymers. 

 

Experimental 

Unless otherwise noted, materials were obtained from commercial suppliers and use without 

purifications. All experiments were performed under ambient atmosphere unless otherwise 

noted. Nuclear magnetic resonance experiments were performed with a Varian 400 MHz 

instrument. All chemical shifts are reported relative to CDCl3 (7.26 ppm for 1H NMR) unless 

otherwise noted. Coupling constants (J) are reported in Hz with abbreviations: s = singlet, d = 

doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet. Standard grade silica 

gel (60 A, 32-63 µm) was used for flash chromatography. 
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2-(5-bromofuran-2-yl)-2-hydroxy-2-methoxyacetonitrile (5) 

0.15g of sodium cyanide was added to a 25 ml round bottom flask and placed under and 

argon atmosphere. 0.42g of 5-bromo-2-methyl furoate was added to a separate flask and 

placed under an argon atmosphere followed by the addition of 7 mL of DMSO. The flask 

containing the furoate was transferred via cannula to the flask containing the sodium cyanide. 

The flask was heated to 100oC and stirred for 24 hours. The reaction contents were quenched 

with 10 mL of saturated ammonium chloride and extracted with 20 mL ethyl acetate. The 

organic layer was washed with 3x20 mL water. The aqueous layer was acidified with sulfuric 

acid and extracted with 3x40mL ethyl acetate. The organic layers were combined, dried over 

sodium sulfate, and solvent was removed in vacuo. 0.46g of 2-(5-bromofuran-2-yl)-2-hydroxy-2-

methoxyacetonitrile was collected in 91% yield. 1H NMR (400 MHz, DMSO-d6) δ 7.23 (t, 1H, J = 

3.5 Hz), 6.78 (t, 1H, J = 2.5 Hz), 2.52 (s, 3H). 

 

2-acetoxy-5-oxotetrahydrofuran-2-carboxylic acid (10) 

0.44g of alpha-ketoglutaric acid, 2 mL of acetic anhydride, and 2 mL of THF were added 

to a 25 mL round bottom flask, and the solution was stirred for 2 days. 0.45 mL of triethylamine 

was added to the flask, and the reaction contents were poured into 10 mL of water. The 

aqueous phase was extracted with 3x10 mL dichloromethane. Then the aqueous phase was 

acidified with sulfuric acid and extracted with 3x10 mL ethyl acetate. The organic layers were 

combined, dried over sodium sulfate, and solvent was removed in vacuo. The residue was 

purified by column chromatography 1:9 methanol: dichloromethane, giving 0.22g of 2-acetoxy-
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5-oxotetrahydrofuran-2-carboxylic acid in 40% yield. 1H NMR (400 MHz, CDCl3) δ 3.64-3.59 (m, 

2H) 2.09 (s, 3H), 1.60-1.53(m, 2H). 

 

Sodium 2-carboxy-5-oxotetrahydrofuran-2-sulfonate (13) 

0.76g of alpha-ketoglutaric acid and 0.59g of sodium bisulfite were added to a 25 mL 

round bottom flask. 3.5 mL of ethyl acetate, 2.3 mL of ethanol, and 0.8 mL of water were 

added, and the flask was stirred at 40oC. After 16 hours, the flask was cooled to 0oC, and a 

white solid precipitated out. The solid was collected through filtration and washed with 

ethanol, giving 0.75g of sodium 2-carboxy-5-oxotetrahydrofuran-2-sulfonate in 65% yield. 

 

5-oxotetrahydrofuran-2-carboxylic acid (15) 

10.13g of glutamic acid was added to a 500 mL round bottom flask. 70 mL of water was 

added, followed by 40 mL of 2M hydrochloric acid. The solution was cooled to 0oC. 5.59g of 

sodium nitrite was dissolved in 40 mL of water and added to the glutamic acid solution over 15 

minutes. The reaction mixture was stirred for 16 hours and allowed to warm to room 

temperature.  The reaction mixture was extracted 3x100 mL of ethyl acetate. The organic layer 

was dried over sodium sulfate, and solvent was removed in vacuo, giving 3.96g 5-

oxotetrahydrofuran-2-carboxylic acid in 44% yield. 1H NMR (400 MHz, CDCl3) δ 5.21-4.88 (m, 

1H), 2.01-1.46 (m, 4H). 
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Dimethyl-2-hydroxyfumarate (19) 

0.27g oxaloacetic acid was placed in 5 mL methanol in a 25 mL round bottom flask. 0.02 

mL thionyl chloride was added, and the reaction was stirred for 3 hours. 5 mL brine was poured 

into the solution and extracted 3x10 mL ethyl acetate. Organic layer was dried over sodium 

sulfate and solvent was removed in vacuo. 0.25g dimethyl (E)-2-hydroxypent-2-enedioate was 

obtained in 99% yield. 1H NMR (400 MHz, CDCl3) δ 11.57 (s, 1H), 6.02 (s, 1H), 3.87 (s, 3H), 3.80 

(s, 3H). 

 

Methyl 2-bromoacrylate (20) 

0.9 mL of methyl acrylate was placed in 5 mL of chloroform. 0.51 mL elemental bromine 

was added over 20 mins. The solution was stirred overnight. Solvent was removed in vacuo, 

then 7.5 mL diethyl ether and 7.5 mL pentanes were added. 1.39 mL triethyl amine was added 

dropwise and the solution was stirred for 3 hours. A precipitate formed and was filtered off. 

The organic phase was washed with 10 mL water, dried over sodium sulfate, and solvent was 

removed in vacuo. 0.62g of methyl 2-bromoacrylate was obtained in 63% yield. 1H NMR (400 

MHz, CDCl3) δ 6.93 (s, 1H), 6.24 (s, 1H), 3.81 (s, 3H). 

 

Trimethyl 4,5-dihydrofuran-2,3,5-tricarboxylate (23) 

0.48g dimethyl-2-hydroxyfumarate was placed in 10 mL tetrahydrofuran. The flask was 

placed under an argon atmosphere and cooled to 0oC. 1.35 mL DBU was added, and the 
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solution was stirred for 20 minutes. 0.4 mL methyl 2-bromoacrylate was added, and the 

solution was stirred 1 hour. The solution was quenched with 10 mL concentrated ammonium 

chloride and extracted 3x10 mL ethyl acetate. Organic layer was dried over sodium sulfate, and 

solvent was removed in vacuo. Residue was purified by column chromatography 1:1 ethyl 

acetate: hexanes, giving 0.20g trimethyl 4,5-dihydrofuran-2,3,5-tricarboxylate in 28% yield. 1H 

NMR (400 MHz, CDCl3) δ 5.15 (dd, 1H, J = 11.8, 7.4 Hz), 3.83 (s, 3H), 3.76 (s, 3H), 3.68 (s, 3H), 

3.25-3.07 (m, 2H). 

 

Trimethyl furan-2,3,5-tricarboxylate (25) 

0.37g of trimethyl 4,5-dihydrofruan-2,3,5-tricarboxylate was placed in 5 mL chloroform. 

0.27g N-bromosuccinimide and 0.03g AIBN were added. Solution was refluxed for 3 hours. 

Solvent was removed in vacuo and purified by column chromatography, 1:2 ethyl acetate: 

hexanes, giving 0.16g of trimethyl furan-2,3,5 tricarboxylate in 44% yield. 1H NMR (400 MHz, 

CDCl3) δ 7.44 (s, 1H), 3.95 (s, 3H), 3.93 (s, 3H), 3.90 (s, 3H). 

 

4-ethyl 2,3-dimethyl furan-2,3,4-tricarboxylate (30) 

0.40g of dimethyl-2-hydroxyfumarate was placed in 15 mL THF. The flask was placed 

under an argon atmosphere and cooled to 0oC. 0.37 mL DBU was added and the solution was 

stirred for 20 minutes. 0.32 mL ethyl bromopyruvate was added, and the solution was stirred 

for 3 hours. The solution was poured into 30 mL 1M sulfuric acid and extracted 3x30 mL ethyl 
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acetate. The solvent was removed in vacuo and refluxed in 25 mL toluene for 16 hours. Solvent 

was removed in vacuo and the residue was purified by column chromatography, giving 0.26g 4-

ethyl 2,3-dimethyl furan-2,3,4-tricarboxylate in 41% yield. 1H NMR (400 MHz, CDCl3) δ 7.99 (s, 

1H), 4.19 (q, 2H, J = 7.3 Hz), 3.85 (s, 3H), 3.80 (s, 3H), 1.22 (t, 3H, J = 7.2 Hz). 

 

Tetramethyl 1-benzyl-1H-pyrrole-2,3,4,5-tetracarboxylate 

0.70g of dimethyl acetylenedicarboxylate was placed in a 50 mL flame dried round 

bottom flask. 10 mL dioxane was added, followed by 0.28 mL benzylamine, 0.02g silver 

tetrafluoroborate, and 0.97g of (diacetoxyiodo)benzene. Solution was refluxed for 3 hours, then 

poured into 15 mL water and extracted 3x30 mL diethyl ether. Organic layer was washed with 

30 mL brine, dried over sodium sulfate, and solvent was removed in vacuo, giving 0.15g of 

tetramethyl 1-benzyl-1H-pyrrole-2,3,4,5-tetracarboxylate in 15% yield. 1H NMR (400 MHz, 

CDCl3) δ 7.67-7.31 (m, 5H), 7.16 (s, 2H), 3.71 (s, 6H), 3.60 (s, 6H). 
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GENERAL CONCLUSION 

In this dissertation, we explored direct routes to biologically active and industrially 

relevant compounds. 

Chapter 1 describes how to tether triphenylphosphine to an antioxidant molecule using 

radical hydrophosphonation, in order to increase the free radical scavenging capability of the 

antioxidant. 

Chapter 2 shows several routes to heteroaromatic polycarboxylates, using fermentation 

products as the starting material in order to supplant the need for petroleum product in plastic 

production. 
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